47 research outputs found

    The influence of bovine serum albumin on β-lactoglobulin denaturation, aggregation and gelation

    Get PDF
    peer-reviewedThe effect of bovine serum albumin (BSA) on the heat-induced denaturation, aggregation and subsequent acid-induced gelation of β-lactoglobulin (β-lg) was investigated in this work. Changes in the denaturation kinetics of β-lg during heating at 78 °C were determined by monitoring the disappearance of the native protein by reverse-phase chromatography. Replacing β-lg with increasing amounts of BSA, while keeping the total protein concentration constant at 5% (w/w), significantly increased the denaturation rate of β-lg from 2.57±0.30×10−3(g L−1)(1−n)s−1 to 5.07±0.72×10−3(g L−1)(1−n)s−1 (β-lg: BSA ratio of 3:1 w/w). The reaction order for β-lg was 1.40±0.09. Partial replacement of β-lg with BSA (β-lg: BSA ratio of 3:1 w/w) significantly increased the reaction order to 1.67±0.13. Heat-induced aggregates between β-lg and BSA were studied by dynamic light scattering, two-dimensional electrophoresis and size exclusion chromatography. The partial replacement of β-lg with BSA significantly changed the gelling properties of the acid-induced gels. A rapid rate of acidification resulted in a significant decrease, while a slow acidification rate resulted in a significant increase in gel strength. Size exclusion chromatography demonstrated that intermolecular disulphide bond formation occurred during both heat-induced denaturation/aggregation and subsequent acid-induced gelation. Results clearly indicate that BSA contributed to the formation of these disulphide bonds.This work was funded under the Food Institutional Research Measure (FIRM) of the National Development Plan 2000-2006. J. Kehoe is funded by the Teagasc Walsh Fellowship schem

    β-Lactoglobulin-linoleate complexes: In vitro digestion and the role of protein in fatty acids uptake

    Get PDF
    peer-reviewedThe dairy protein β-lactoglobulin (BLG) is known to bind fatty acids such as the salt of the essential longchain fatty acid linoleic acid (cis,cis-9,12-octadecadienoic acid, n-6, 18:2). The aim of the current study was to investigate how bovine BLG-linoleate complexes, of various stoichiometry, affect the enzymatic digestion of BLG and the intracellular transport of linoleate into enterocyte-like monolayers. Duodenal and gastric digestions of the complexes indicated that BLG was hydrolyzed more rapidly when complexed with linoleate. Digested as well as undigested BLG-linoleate complexes reduced intracellular linoleate transport as compared with free linoleate. To investigate whether enteroendocrine cells perceive linoleate differently when part of a complex, the ability of linoleate to increase production or secretion of the enteroendocrine satiety hormone, cholecystokinin, was measured. Cholecystokinin mRNA levels were different when linoleate was presented to the cells alone or as part of a protein complex. In conclusion, understanding interactions between linoleate and BLG could help to formulate foods with targeted fatty acid bioaccessibility and, therefore, aid in the development of food matrices with optimal bioactive efficacyS. Le Maux is currently supported by a Teagasc Walsh Fellowship and the Department of Agriculture, Fisheries and Food (FIRM project 08/RD/TMFRC/650). We also acknowledge funding from IRCSET-Ulysses Travel Grant

    The effect of pre-treatment of protein ingredients for infant formula on their in vitro gastro-intestinal behaviour

    Get PDF
    peer-reviewedThree milk products, skim milk powder (SMP), demineralised whey powder (DWP) and a whey dominant infant formula (60/40IF) and their corresponding partially hydrolysed products (SMPhyd, DWPhyd and 60/40hyd, respectively) were subjected to static infant in vitro gastro-intestinal (GI) digestion and their digesta were subsequently analysed for protein breakdown. The pre-hydrolysis of proteins provided a head-start in the gastric digestion process compared with the intact proteins, resulting in a higher proportion of small peptides (<1 kDa), a higher degree of hydrolysis and lower observable protein coagulation or curd formation in the gastric phase of the casein dominant systems in particular, which may lead to an earlier onset of gastric emptying in vivo. Little or no differences were detected during the intestinal phase. Hence pre-hydrolysis of proteins may be used as a strategy to lower gastric transit times, which may ease the gastric digestion of infant formulations

    Cytotoxic Complexes of Sodium Oleate with β-Lactoglobulin

    Get PDF
    pre-printA complex of α-lactalbumin and oleic acid has previously been shown to induce apoptosis in cancer cells in a number of in vitro and in vivo trials. This complex is called HAMLET or BAMLET, depending on the origin of α-la (human/bovine alpha-lactalbumin made lethal to tumour cells). In the current study, it was shown that bovine β-lactoglobulin (β-lg), upon binding sodium oleate (NaOle), the salt of oleic acid, also acquires cytotoxicity towards tumour cells (human monocytic cells U937), analogously to HAMLET/BAMLET complexes. The properties of the complex were characterized using FIR spectroscopy, HPLC and SDS-PAGE. It was shown that the level of covalent oligomerization (dimers and trimers) of β-lg increased with increasing the molar ratio of sodium oleate NaOle:β-lg in the preparation procedure. At the same time, increasing the molar ratio of NaOle:β-lg increased the cytotoxicity of the complex. The increase in cytotoxicity appeared to be dependent on the amount of bound NaOle in the complex, but not on the content of multimeric forms of β-lg. The NaOle/β-lg complex also showed similarity with BAMLET in penetrating the cell membrane and co-localizing with the cell nucleus. Furthermore, DNA fragmentation studies suggested that tumour cells (U937) treated with the complex died by apoptosis, as in the case of BAMLET, and healthy cells appeared to be less affected by treatment, as shown with model rat adrenal pheochromocytoma cells PC12. In conclusion, β-lg and NaOle can form complexes with apoptosis-inducing qualities comparable to those of BAMLET.The work was funded by the Irish Dairy Research Trust and The Department of Agriculture (Food Institutional Research Measure – FIRM project 08RDTMFRC650) under the National Development Plan 2007-2013. K. Lišková was funded under the TeagascWalsh Fellowship Scheme

    Dairy food structures influence the rates of nutrient digestion through different in vitro gastric behaviour

    Get PDF
    peer-reviewedThe purpose of this study was to investigate in vitro the extent to which specific food structures alter gastric behaviour and could therefore impact on nutrient delivery and digestion in the small intestine. Results obtained from a specifically developed gastric digestion model, were compared to results from a previous human study on the same foods. The semi-dynamic model could simulate the main gastric dynamics including gradual acidification, lipolysis, proteolysis and emptying. Two dairy-based foods with the same caloric content but different structure were studied. The semi-solid meal comprised a mixture of cheese and yogurt and the liquid meal was an oil in water emulsion stabilised by milk proteins. Our findings showed similar gastric behaviour to that seen previously in vivo. Gastric behaviour was affected by the initial structure with creaming and sedimentation observed in the case of liquid and semi-solid samples, respectively. Lipid and protein digestion profiles showed clear differences in the amount of nutrients reaching the simulated small intestine and, consequently, the likely bioaccessibility after digestion. The semi-solid sample generated higher nutrient released into the small intestine at an early stage of digestion whereas nutrient accessibility from liquid sample was delayed due to the formation of a cream layer in the gastric phase. This shows the strong effect of the matrix on gastric behaviour, proteolysis and lipolysis, which explains the differences in physiological responses seen previously with these systems in terms of fullness and satiety.This work has funded by the Irish Dairy Levy Research Trust (project number MDDT6261). Ana-Isabel Mulet-Cabero was funded under Teagasc Walsh Fellowship scheme and BBSRC in the UK (grant BB/J004545/1)

    Stabilising effect of α-lactalbumin on concentrated infant milk formula emulsions heat treated pre- or post-homogenisation

    Get PDF
    peer-reviewedProtein type and/or heat treatment pre- or post-homogenisation can affect the physical stability of infant formulations during manufacture. Previous research has described the use of α-lactalbumin addition in infant formulae, but has not demonstrated the effect of heating pre- or post-emulsion formulation during processing. The objective of this study was to evaluate the effect of both of these parameters. Three batches of model 1st-stage infant formula containing differing whey protein ratios (60:40 whey: casein with α-lactalbumin content 12, 30 or 48% of total protein) were prepared. Each batch was split; one half receiving heat treatment pre-homogenisation and the second half homogenised and then heat treated. Emulsion stability was determined by size exclusion chromatography, SDS-PAGE, particle size and viscosity measurements. There was a significant (P < 0.05) reduction in the formation of large soluble aggregates upon increasing α-lac concentration in emulsions heat treated either before or after homogenisation. Heat treatment of formulations post-homogenisation resulted in a higher (P < 0.05) D.v09 within the particle size distribution; increasing α-lactalbumin concentration to 30 or 48% significantly (P < 0.05) reduced the D.v09 within the particle size distribution in these emulsions. The viscosity of concentrates (55 % total solids) containing the 12% α-lactalbumin, heat treated post-homogenisation, was significantly greater (P < 0.05) than the equivalent emulsion heat treated pre-homogenisation; increasing the α-lactalbumin concentration to 30 or 48% significantly (P < 0.05) reduced viscosity. When the α-lactalbumin content was increased to 48% as a percentage of the total protein, heating before or after emulsion formation had no effect on concentrate viscosity. The findings demonstrate the importance of thermal denaturation/aggregation of whey proteins (and in particular, the ratio of α-lactalbumin to β-lactoglobulin) prior to homogenisation of infant formula emulsions

    Covalent labelling of β-casein and its effect on the microstructure and physico-chemical properties of emulsions stabilized by β-casein and whey protein isolate

    Get PDF
    peer-reviewedThe objective of this work was to investigate the effect of covalent labelling on the physico-chemical properties of β-casein (β-CN) in solution and in emulsions stabilized by β-CN and whey protein isolate (WPI). β-CN was covalently labelled by 5-(and 6)-carboxytetramethylrhodamine, succinimidyl ester (NHS-Rhodamine). The effect of conjugating β-CN with NHS-Rhodamine on the spectroscopic properties of labelled β-CN (β-CNlabelled) was examined. No significant difference in interfacial tension (p > 0.05) was found between mixture of WPI and β-CNlabelled (0.5% w/w WPI/β-CNlabelled) and of WPI and β-CN (0.5% w/w WPI/β-CN) in 10 mM phosphate buffer (pH 7.0) at 20 °C. Oil-in-water emulsions stabilized with either WPI/β-CN or WPI/β-CNlabelled (0.5% w/w) were also investigated using laser-light scattering, analytical centrifugation, rheometry and CLSM. It was shown that labelling had no significant effect on the physico-chemical properties of emulsions (p > 0.05) in terms of droplet size, creaming stability, viscosity or zeta-potential. Confocal micrographs of emulsions made with WPI/β-CNlabelled showed that both β-CN and whey proteins could be observed simultaneously, and were co-localized at the surface of fat globules. Furthermore, it was found through image analysis that β-CN produced a thicker interfacial layer than WPI

    In vitro digestion of protein-enriched restructured beef steaks with pea protein isolate, rice protein and lentil flour following sous vide processing

    Get PDF
    peer-reviewedThe effect of plant protein inclusion in cooked meat upon in vitro gastro-intestinal (GI) digestion was investigated. Pea protein isolate, rice protein and lentil flour were used to increase the protein content in a meat model system restructured using two transglutaminase enzymes [Activa®EB (TG) and Transgluseen™-M (TS)]. Restructured beef steaks were subjected to simulated GI digestion using the static INFOGEST method. Samples taken at different digestion times were analysed using SDS-PAGE, size exclusion-HPLC, free amino acid analysis and microscopy. SDS-PAGE analysis revealed significant protein hydrolysis during GI digestion. Most soluble peptides had a molecular weight smaller than 500 Da, corresponding to peptides of <5 amino acids, regardless of food treatment. The amounts of released, free amino acids isoleucine, lysine, phenylalanine and valine were higher (P < 0.05) in lentil-enriched restructured beef steaks following GI digestion. Confocal laser scanning microscopy (CSLM) revealed pronounced aggregation in digested samples. In vitro digestates of protein-enriched restructured beef steaks showed lower production of small molecular weight peptides. This study demonstrated how the bioaccessibility of protein-enriched restructured beef steaks are influenced by formulation and processing

    Advances of plant-based structured food delivery systems on the in vitro digestibility of bioactive compounds

    Get PDF
    peer-reviewedFood researchers are currently showing a growing interest in in vitro digestibility studies due to their importance for obtaining food products with health benefits and ensuring a balanced nutrient intake. Various bioactive food compounds are sensitive to the digestion process, which results in a lower bioavailability in the gut. The main objective of structured food delivery systems is to promote the controlled release of these compounds at the desired time/place, in addition to protecting them during digestion processes. This review provides an overview of the influence of structured delivery systems on the in vitro digestive behavior. The main delivery systems are summarized, the pros and cons of different structures are outlined, and examples of several studies that optimized the use of these structured systems are provided. In addition, we have reviewed the use of plant-based systems, which have been of interest to food researchers and the food industry because of their health benefits, improved sustainability as well as being an alternative for vegetarian, vegan and consumers suffering from food allergies. In this context, the review provides new insights and comprehensive knowledge regarding the influence of plant-based structured systems on the digestibility of encapsulated compounds and proteins/polysaccharides used in the encapsulation process.Research Leader

    Isolation and characterisation of κ-casein/whey protein particles from heated milk protein concentrate and role of κ-casein in whey protein aggregation

    Get PDF
    peer-reviewedMilk protein concentrate (79% protein) reconstituted at 13.5% (w/v) protein was heated (90 °C, 25 min, pH 7.2) with or without added calcium chloride. After fractionation of the casein and whey protein aggregates by fast protein liquid chromatography, the heat stability (90 °C, up to 1 h) of the fractions (0.25%, w/v, protein) was assessed. The heat-induced aggregates were composed of whey protein and casein, in whey protein:casein ratios ranging from 1:0.5 to 1:9. The heat stability was positively correlated with the casein concentration in the samples. The samples containing the highest proportion of caseins were the most heat-stable, and close to 100% (w/w) of the aggregates were recovered post-heat treatment in the supernatant of such samples (centrifugation for 30 min at 10,000 × g). κ-Casein appeared to act as a chaperone controlling the aggregation of whey proteins, and this effect was stronger in the presence of αS- and β-casein.This work was supported by Dairy Levy Research Trust (project MDDT6261 “ProPart”). S. J. Gaspard was funded under the Teagasc Walsh Fellowship Scheme (reference number 2012211
    corecore